Haynes 25 L605

HAYNES 25 (L605, Stellite 25, UNS R30605)

Ni 10.0, Cr 20.0, Mn 1.5, C 0.33, Si 0.40, Fe 3.00, S 0.030, Co Bal., P 0.040, W 15.00

High Performance Alloys stocks and produces HAYNES 25 (L605) in this grade in the following forms: Bar, wire spools, wire cuts, sheet/plate, strip, tube. Request quote on this grade.

Features

  • Outstanding high temperature strength
  • Oxidation resistant to 1800° F
  • Galling resistant
  • Resistant to marine environments, acids and body fluids

Applications

Gas turbine engine combustion chambers and afterburners
High temperature ball bearings and bearing races
Springs
Heart valves

Properties

HAYNES 25 (L605) is a non-magnetic cobalt based superalloy. HAYNES 25 (L605) maintains good strength upto 2150°F. AMS 5759 requires minimum yield strength of 45,000 psi at room temperature. HAYNES 25 (L605) maintains good oxidation resistance up to 1900° F. HAYNES 25 (L605) has a unique ability to resist corrosion in very severe environments. Highly resistant to hydrochloric acid, nitric acid and wet chlorine (subject to need for exercising care in its selection at certain con¬centrations and temperatures)

Hardenability

HAYNES 25 (L605) hardness is typically 250 BHN and never higher than 275 BHN by specification. Not significantly hardenable. Does not respond to customary aging treatments, but strain aging at relatively low temperatures (700-1100° F) can improve creep and rupture strength when the alloy is in service at temperatures under 1300° F. Also, tensile and creep strength can be improved by cold working. HAYNES 25 (L605) is an austenitic alloy.

Chemical Requirements

Ni

Cr

Mn

Si

Fe

S

Co

Max

11.00

21.00

2.00

0.40

3.00

0.030

Bal

Min

9.00

19.00

1.00

Mechanical Property Requirements

Ultimate Tensile

Yield Strength (0.2% OS)

Elong.in 4D %

R/A

Hardness

Min

125 Ksi

45.0 KSi

30

Max

Min

862 Mpa

310 MPa

Max

Specifications

Form

Standard

Metal Type

UNS R30605

Bar

AMS 5759 ASTM F90 GE B50T26A

Cold Worked Bars
MCI 1031 GPS 2051

Wire

Sheet

AMS 5537

Plate
AMS 5537

Foil

AMS 5537

Fitting

 

Welding Tube
GE B50T26A

Forging

AMS 5759

Weld Wire

AMS 5759

Weld Electrode
 

Din

2.4964

Performance Profile

Alloy L605 is the strongest of the formable cobalt alloys, useful for continuous service to 1800°F. Because of long and widespread use, this alloy has been the subject of many investigations to determine its properties over a wide range of conditions, thus making it an unusually well characterized material. Alloy L-605 is also known as alloy 25.

When exposed for prolonged periods at intermediate temperatures, alloy L-605 exhibits a loss of room temperature ductility in much the same fashion as other super alloys, such as X or 625.

Alloy L-605 is welded using gas tungsten arc, gas metal arc, shielded metal arc, electron beam and resistance welding. Submerged arc welding is not recommended. Use good joint fit-up, minimum restraint, low inter-pass temperature and cool rapidly from welding. For maximum ductility fabricated components should be annealed 2150-2250°F, rapid cool.

Corrosion Resistance

HAYNES 25 (L605) resistance to high temperature oxidation and carburization is good. The alloy, while not primarily intended for aqueous corrosion, is also resistant to corrosion by acids such as hydrochloric and nitric acid, as well as being resistant to wet chlorine solutions.

Density: 0.330 lbs./cubic inch

Machining 

The alloys described here work harden rapidly during machining and require more power to cut than do the plain carbon steels. The metal is ‘gummy,’ with chips that tend to be stringy and tough. Machine tools should be rigid and used to no more than 75% of their rated capacity. Both work piece and tool should be held rigidly; tool overhang should be minimized. Rigidity is particularly important when machining titanium, as titanium has a much lower modulus of elasticity than either steel or nickel alloys. Slender work pieces of titanium tend to deflect under tool pressures causing chatter, tool rubbing and tolerance problems.
Make sure that tools are always sharp. Change to sharpened tools at regular intervals rather than out of necessity. Titanium chips in particular tend to gall and weld to the tool cutting edges, speeding up tool wear and failure. Remember- cutting edges, particularly throw-away inserts, are expendable. Don't trade dollars in machine time for pennies in tool cost.

Feed rate should be high enough to ensure that the tool cutting edge is getting under the previous cut thus avoiding work-hardened zones. Slow speeds are generally required with heavy cuts. Sulfur chlorinated petroleum oil lubricants are suggested for all alloys but titanium. Such lubricants may be thinned with paraffin oil for finish cuts at higher speeds. The tool should not ride on the work piece as this will work harden the material and result in early tool dulling or breakage. Use an air jet directed on the tool when dry cutting, to significantly increase tool life.

Lubricants or cutting fluids for titanium should be carefully selected. Do not use fluids containing chlorine or other halogens (fluorine, bromine or iodine), in order to avoid risk of corrosion problems. The following speeds are for single point turning operations using high speed steel tools. This information is provided as a guide to relative machinability, higher speeds are used with carbide tooling.

Material Speed
Surface ft/mm
Speed
%B1112
AISI B1112 165 100
Rne 41 12 7
25 (L-605) 15 9
188 15 9
N-155 20 12
Waspaloy 20 12
718 20 12
825 20 12
X 20 12
RA333 20-25 12-15
A-286 30 18
RA330 30-45 18-27
HR-120TM 30-50 18-30
Ti 6A1-4V
- soln annealed
- aged

30-40
15-45

18-30
9-27
RA 353 MA~ 40-60 25-35
20Cb-3~ 65 40
AL6xN~ 65 40
RA309 70 42
RA310 70 42
304 75 45
321 75 45
446 75 45
Greek Ascoloy Annealed 90 55
Hardened Rc35 50 30
303 100 60
416 145 88
17-4 PH
- soln treated
- aged Hi 025

75
60

45
36

COLD-WORKED PROPERTIES

Cobalt Alloy L605 has excellent strength and hardness characteristics in the cold-worked condition. These high property levels are also evident at elevated temperature, making Alloy L605 quite suitable for applications such as ball bearings and bearing races. A modest additional increase in hardness and strength can be achieved through aging of the cold-worked material.

METAL-TO-METAL GALLING RESISTANCE

Cobalt Alloy L605 exhibits excellent resistance to metal galling. Wear results shown below were generated for standard matching material room-temperature pin on disc tests. Wear depths are given as a function of applied load. The results indicate that Alloy L605 is superior in galling resistance to many materials, and is surpassed only by ULTIMETTM alloy and HAYNES alloy 6B. Both of these materials were specifically designed to have excellent wear resistance.

HIGH-TEMPERATURE HARDNESS PROPERTIES

The following are results from standard vacuum furnace hot hardness tests. Values are given in originally measured DPC (Vickers) units and conversions to Rockwell C/B scale in parentheses.

AQUEOUS CORROSION RESISTANCE

HAYNES 25 (L605) was not designed for resistance to corrosive aqueous media. Representative average corrosion data are given for comparison. For applications requiring corrosion resistance in aqueous environments, ULTIMET alloy and HASTELLOY® corrosion-resistant alloys should be considered.

OXIDATION RESISTANCE

Cobalt Alloy L605 exhibits good resistance to both air and combustion gas oxidizing environments, and can be used for long-term continuous exposure at temperatures up to 1800°F (980°C). For exposures of short duration, Alloy L605 can be used at higher temperatures.

RA330 TM and RA333 TM are Registered Trademarks of Rolled Alloys
353 MA TM is a Registered Trademark of Avesta Sheffield
20Cb-3 TM is a Registered Trademark of Carpenter Technology
HR-120TM is a Trademark of Haynes International
INCONEL TM is a Trademark of Special Metals

Share by: